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ABSTRACT
Motivation: In detection of non-coding RNAs, it is often necessary
to identify the secondary structure motifs from a set of putative RNA
sequences. Most of the existing algorithms aim to provide the best
motif or few good motifs, but biologists often need to inspect all the
possible motifs thoroughly.
Results: Our method RNAmine employs a graph theoretic repre-
sentation of RNA sequences, and detects all the possible motifs
exhaustively using a graph mining algorithm. The motif detection pro-
blem boils down to finding frequently appearing patterns in a set of
directed and labeled graphs. In the tasks of common secondary struc-
ture prediction and local motif detection from long sequences, our
method performed favorably both in accuracy and in efficiency with
the state-of-the-art methods such as CMFinder.
Availability: The software is available on request.
Contact: hamada-michiaki@aist.go.jp
Supplementary information: Visit the following URL for supplemen-
tary information, software availability and the information about the
web server. http://www.ncrna.org/RNAMINE/.

1 INTRODUCTION
Recently, it is revealed that many RNAs, which are not translated
into proteins, play essential roles at various biological stages. Those
RNAs are called functional RNAs or non-coding RNAs (ncRNAs)
and attracting remarkable attention. Computational and experimen-
tal screenings have predicted a number of non-coding RNAs (e.g.,
Denget al., 2006; Washietlet al., 2005; Numataet al., 2003), but
only few of those RNAs are classified, because their functions are
still unknown.

When a set of unaligned sequences of putative RNAs is provided
without further information, we have to choose an appropriate ana-
lysis tool based on thehomogeneityof the sequences. In this paper,
we use the termhomogeneityto both similarity of the sequences
and that of the secondary structures. If the RNA sequences are
highly homogeneous, they are evolutionarily related and share the
unique common structure. In that case, the common structurecan�to whom correspondence should be addressed

be predicted by RNAalifold (Hofackeret al., 2002) or comRNA (Ji
et al., 2004), for example. Once the common structure has been
determined, it can be used for a genome-wide scan by ,e.g., Infer-
nal (Eddy and Durbin, 1994), RNAmotif (Mackeet al., 2001), or
PHMMTS (Sakakibara, 2003).

The problem becomes more difficult when the homogeneity is
low. In some cases, only the subset of the given sequences shares
the common structure. In some cases, there are an unknown number
of the clusters with different common structures. In order to ana-
lyze the sequences with low homogeneity, it is necessary to detect
the secondary structuremotifsshared by a significant fraction of the
sequences, not by all. In order to find multiple motifs, it is possi-
ble to use a mixture of the probabilistic motif models (Blekaset al.,
2003) and train it using the EM algorithm (Dempsteret al., 1977),
which is an algorithm for finding the maximum likelihood estima-
tes of the parameters in the probabilistic models. However,that
approach inevitably suffers from local minima problems, i.e., the
solution is not guaranteed to converge to the global optimum. In this
paper, we propose a new method based on a graph mining algorithm
in order to detect the motifs shared by a subset of the given RNA
sequences. Our method is also applicable to the set of sequences
from multiple families, and able to find the multiple motifs.CMfin-
der (Yaoet al., 2005) does not assume that all the sequences have a
common secondary structure, but are unable to find multiple motifs
of the sequences from different families.

In this paper, an RNA sequence with its potential secondary struc-
ture is represented as a directed labeled graph, called astem graph,
each of whose node corresponds to astem candidate. We employ
graph miningalgorithms, where highly probable motifs areexhau-
stivelyenumerated using the branch-and-bound algorithm over the
well-designed data structures. Graph mining is a recently emer-
ging subfield of data mining and a suite of algorithms are proposed
recently (e.g., FSSM (Huanet al., 2003), AGM (Inokuchiet al.,
2000, 2003), gSpan (Yan and Han, 2002)). Unlike the RNA graph
proposed by Ganet al. (2003), it is not required that the secondary
structure of each sequence is known in our algorithm. The nodes are
made from the putative stems derived by thresholding McCaskill’s
base pairing probability matrix (Mathews, 2004). Therefore, the
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stem graph can take into account all the possible secondary struc-
tures. A discrete label is assigned to each node such that thesimilar
stem candidates share the common label. The labels are determined
by a hierarchically clustering of all the stem candidates inthe data-
base. All the subgraphs appearing in at leastm stem graphs, called
stem patterns, are exhaustively enumerated. For the total number of
graphsn, the fractionm=n is calledminimum support. This para-
meter explicitly specifies the homogeneity of the sequence set. By
setting minimum support to 0.9, for, example, we can enumerate all
the stem patterns included in at least 90% of the sequences.

We developed a new graph mining algorithm by expanding
gSpan (Yan and Han, 2002), because it turned out that conventio-
nal graph mining algorithms are too restrictive for our purpose. One
problem is that patterns are identified based on the exact match of
labels. In order to allow approximate label match, we introduce a
taxonomyof the labels, which essentially describe the similarity
of the labels. Furthermore, we exploited graph-theoretical proper-
ties of our RNA graphs to increase efficiency and reduce redundant
solutions.

In the experiments, our algorithm will be applied to three different
tasks. The first task is to predict the common secondary structure
of every seed sequence in the specific Rfam (Griffiths-Joneset al.,
2005) families (Section 3.1). Since the sequence set is derived from
a single family, the homogeneity is considered to be high. However,
we will show that the accuracy of the prediction can be improved by
exploiting multiple clusters in a family. The second task isto find
two Rfam families in a mixed set of the sequences, where the mini-
mum support is set to a small value (Section 3.2). Finally, a short
motif will be found from a set of long RNA sequences (Section 3.3).

2 METHODS
Our main task is to find the frequent stem patterns from a database
of sequences with unknown secondary structures. A core ideais to
represent an RNA sequence as a new data structure called thestem
graph. By the conversion of the sequences to the stem graphs, our
task will be formulated as a mathematically well-defined problem.
A motif is defined as a stem pattern in a graph-theoretic manner.

2.1 Stem Graphs and Stem Patterns
Let us begin with the stem graph of a sequence whose secondary
structure is known. The known secondary structure of RNA canbe
represented by the set of stems in the structure. In astem graph, a
node corresponds to a stem and an edge between two nodes descri-
bes the relative position of the two corresponding stems (Figure 1,
left). Each node is indexed by the three-tuple(S; d; p), whereS is
the stem sequence,d is the distance in nucleotide between 50 and
30 strands of the stem andp is the left-most position of the stem
in the original RNA sequence.Each edge has a label P (Parallel),
N (Nested) or K (Pseudoknotted) according to the relative position
(Figure 2 left. See also Tabeiet al. (2006)). An important feature is
that when the secondary structure is known, the corresponding stem
graph forms acompletegraph (i.e.,clique), since one of the three
relations always applies to any pair of stems.

When the secondary structure is unknown, a stem graph is defi-
ned on thestem candidates, not on the confirmed stems as their
nodes. The stem candidates are derived from the base pairingproba-
bility matrix calculated by McCaskill’s algorithm (McCaskill, 1990)
using the Vienna RNA package (Hofackeret al., 1994). The(i; j)
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Fig. 1. An example of RNA sequence with known secondary structure
(right: cited from Rfam database, http://www.sanger.ac.uk/Software/Rfam/)
and its corresponding stem graph (left). The color of edge corresponds to a
relation of stem indicated in left of Figure 2 and the color ofthe vertex in the
left figure corresponds to the color of the stem in the right figure.
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Fig. 2. Left: The three positional relations between two stem candidates.
Right: An example of the stem graph superposed on the base pairing probabi-
lity matrix of a tRNA sequence. A consistent RNA secondary structure must
be a clique subgraph of this graph. For example(1; 3; 7; 9) is consistent.

value of this matrix represents the probability of thei-th nucleotide
and thej-th nucleotide forming a base pair. Consecutive base pairs
whose probability are more thanpmin are identified as the part of
the stem candidates, and the stem candidates shorter thanlmin are
discarded. The node index is expanded as(S; d; p; r), wherer is
the confidence of the stem, calculated as the average of base pairing
probabilities. The stem graph made from a sequence is usually not
complete, because there may be overlapping stems (Figure 2,right).

Since the node index has a complex form and not amenable to
graph mining, it is translated into a set of discrete labels in the
following way. The nodes of all the stem graphs are clusteredand
organized as alabel taxonomy. First, a dendrogram is generated by
the hierarchical clustering of the nodes (i.e., stem candidates) from
all the stem graphs using the indices(S; d; p; r) (Figure 3, left),
where the measure of dissimilarity will be presented in Section 2.2.
Then, it is sliced to layers by the given dissimilarity thresholds. Then
we generate a label for each cluster in each layer, and the resulting
tree of labels is called the label taxonomy (Figure 3, right).

A stem patternis represented as a directed labeled and clique
graph where node labels are taken from arbitrary layers of the label
taxonomy, and the edge label is either P,N or K. A stem patternP
matchesto a directed graphG, if they have the same topology and
the same edge labels,and every node label inP is an ancestor in the
label taxonomy of the label of the corresponding node inG.
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Fig. 3. Left: A dendrogram generated by a hierarchical clustering of the set
of the stem candidates inall the sequences using dissimilarity described in
2.2 between stem candidates. Each leaf in left dendrogram indicates a stem
candidate. Right: A label taxonomy constructed from the dendrogram in the
left figure. The right most fractions of taxonomy are generalization cost of
label in each layer. Taxonomy in this figure shows nodes 1 and 2have the
same label “A” in the 1st layer of taxonomy and 1, 2, 3, 4 have the same label
“E” in the 2nd layer.

If a stem pattern finds matching subgraphs in some of the stem
graphs, the corresponding RNA sequences share the partial common
structurethat are represented by the stem pattern.

2.2 Dissimilarity of Stems
We define the dissimilarity between two stemsS1 andS2 as the
weighted sum of the four components,d(S1; S2) = Xi=1;2;3;4widi(S1; S2); (1)

wherewi is the weight satisfying
Pi=1;2;3;4 wi = 1. The first

component accounts for the sequence similarity,d1(S1; S2) =exp f��SW (S1; S2)g, whereSW (S1; S2) is the score of the
local alignment of the base pairs using RIBOSUM85-60 substi-
tution matrix (Klein and Eddy, 2003). The confidence score ofa
stemr(S) is calculated as the average of the base pairing probabi-
lities. Based on those scores, the second component is derived asd2(S1; S2) = 1 � 12 (r(S1) + r(S2)). Finally, the third and forth
component are respectively computed asd3(S1; S2) = 1� � +min(d(S1); d(S2))� +max(d(S1); d(S2))
and d4(S1; S2) = 1� 
 +min(p(S1); p(S2))
 +max(p(S1); p(S2))
using the loop distance(the distance between inner most base pairs)d(S) and the start position(the position of leftmost base)of the
stemp(S). For the purpose of finding the local motifs from long
sequences,w4 should be set to zero in order to disregard the abso-
lute positions. See (Jiet al., 2004) and (Tabeiet al., 2006) for the
alternative (dis)similarity measures.

2.3 Graph Mining with Label Taxonomy
In obtaining the stem patterns, we take a graph mining approach,
where a set of constraints is determined first, and all the stem pat-
terns satisfying the constraints are exhaustively enumerated. It is
clearly different from other approaches that aim to obtain the best
stem pattern. We set up the following three constraints. Thefirst is
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Fig. 4. Schematic figure of the tree-shaped search space of stem patterns. A
child pattern is made by adding one edge to a previous pattern. The vertex
labels have a predetermined order governing the extension process (shown
as “<”).

to require that the stem pattern finds hits in at leastm stem graphs,
because it is meaningless to obtain a stem pattern with no match.
Denote bysupport(P ) the fraction of stem graphs that includes the
patternP . Then, the first constraint is written assupport(P ) �m=n, wherem=n is called the minimum support (minsup) later
on. The second is that the stem pattern is constrained to be a clique
to avoid overlapping stems. The third constraint is about the genera-
lity of the stem pattern. If many labels in the stem pattern are chosen
from a higher layer of the taxonomy, the pattern is so generalthat the
number of hits (i.e., subgraphs which matches to that pattern) is too
large. To let the hits of the pattern form a meaningful RNA family,
they have to besimilar to each other. To encourage the use of the
labels from low layers, the cost of a label is defined as an increasing
function of the layer height. For a stem patternP , the cost
ost(P )
is defined as the average cost of the labels of all its nodes. Asthe
third constraint, we require
ost(P ) below a threshold, called the
maximum cost (max
ost). In summary, our task is formulated as
below.

FORMULATION 1. Given a set of stem graphs, a label taxonomy,
a minimum supportminsup and a maximum costmax
ost, com-
pletely enumerate every stem patternP that satisfies the following
conditions:

1. support(P ) � minsup.

2. P is a clique.

3. 
ost(P ) � max
ost.
Comprehensive enumeration of all the subgraphs in a graph data-

base is a well-studied subject in computer science. We have built our
algorithm as an extension of a basic comprehensive algorithm called
gspan (Yan and Han, 2002). Gspan is basically a branch-and-bound
algorithm over a DFS code tree1 (Figure 4).Each node of the tree is
a DFS code which is a string representation of a graph.The tree is
organized such that the child nodes represent the supergraphs of the
parent node. The graphs in the database are enumerated by starting
from the root node and expanding the tree by generating new child
nodes. Yan and Han (2002) proposed an efficient way of generating

1 DFS stands for depth first search.
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the tree whose nodes enumerate the set of all the subgraphs ofthe
original graph without redundancy.

In our problem, the stem patterns are defined as the subgraphsof
the stem graphs satisfying the constraints. To impose the constraints,
we focus on the following properties of the DFS code tree2. If the
subgraphP1 lies in the upstream ofP2 , then� (a) support(P1) � support(P2),� (b) 
ost(P1) � 
ost(P2) if P1 andP2 are cliques.

In our algorithm, the generation of the DFS code tree is restricted
by exploiting those properties. For example, if a cliqueP whose
support is belowminsup or cost is abovemax
ost is found in the
DFS code tree, we do not generate the downstream ofP (i.e., tree
pruning). Non-clique stem patterns are enumerated as well,but only
the cliques are selected as the final solution. In comparisonto the
comprehensive enumeration, this restriction improves theefficiency
and the memory consumption by orders of magnitude. The condi-
tion (a) is common in other graph mining methods, but the condition
(b) is unique to our algorithm. Pseudocodes of our algorithms are
shown in Algorithms 1 and 2. Algorithm 1 is the main part of our
algorithm and Algorithm 2 is a recursively called subroutine. For
technical details, see the supplementary paper.

Algorithm 1 RNAmine(RS, minsup, max
ost)
Input: RS: set of RNA sequences,minsup: minimum support,max
ost: maximum cost
Output: PS: stem patterns which satisfy all the conditions in

Formulation 1
1: PS = ;
2: construct directed labeled graphsGS and taxonomyT fromRS
3: Cinitial  fP : P is edge size 1; support(P ) �minsup and 
ost(P ) � max
ostg
4: sortCinitial in DFS lexicographic order
5: for all s 2 Cinitial do
6: Call GraphMining (s, minsup, max
ost,GS, T , PS)
7: end for
8: return PS

Algorithm 2 GraphMining (s, minsup, max
ost,GS, T , PS)
Input: s: current pattern,GS: directed labeled graph set,T :

taxonomy of vertex label
1: if support(s) < minsup then return
2: if 
ost(s) > max
ost then return
3: if s is a non-minimum DFS codethen return
4: if s is a cliquethen store patterns toPS
5: scanGS once, find every edgee that can be added tos without

violating the constraints; insert the found edges intoC
6: sortC in the DFS lexicographic order
7: for all s 2 C do
8: Call GraphMining(s, minsup, max
ost,GS, T , PS)
9: end for

2 Our DFS code tree is slightly different from original one. See supplemen-
tary paper for details.

2.4 Secondary structure prediction using stem patterns
Given a stem graph, any contained clique gives a consistent secon-
dary structure without overlapping stems. Theminimum free energy
(MFE) of the corresponding secondary structure of such a clique
can be computed by a software like RNAeval in Vienna RNA
package(Hofackeret al., 1994).

Using the MFE of the cliques, the secondary structure predic-
tion is done in the following way. Assume that the stem patterns
are already obtained from a set of RNA sequences. In predicting
the secondary structure of a sequence in the set, we first identify
the set of stem patterns that have matching subgraphs. A matching
subgraph corresponds to a predicted secondary structure. Notice
that one stem pattern can be matched in a several different ways,
creating slightly different secondary structures (Figure7). Repea-
ting this procedure through all the stem patterns, the structures of
all the sequences are determined. This process gives a number of
secondary structures to one sequence, so they are ranked by their
minimum free energy (Figure 7).

3 RESULTS
For benchmarking, we used the Rfam database (version 7.0, March
2005) containing 503 RNA families (Griffiths-Joneset al., 2005),
whose common secondary structures are available for the seed
sequences. We selected eight families whose number of hairpins
is more than three. All the families except tRNA are used by Yao
et al.(2005) as well. For the families that contain more than 50 seed
sequences, we randomly selected 50 sequences. We did not include
the sequences with a nucleotide character other than A, C, U,G and
T. The dataset is summarized in Table 1. All experiments are per-
formed using a machine with a 2.4GHz AMD OpteronTM processor
and 20GB memory.

3.1 Secondary Structure Prediction
Secondary structure prediction of an individual sequence can be
done by free energy minimization using, e.g., RNAfold (Hofacker
et al., 1994). However, when the sequences share a common secon-
dary structure, it is often better to find the common structure and
parse each sequence using the common structure. This process
can be implemented using the EM algorithm over the covariance
model, CMfinder (Yaoet al., 2005) and a graph-theoretical method,
comRNA (Ji et al., 2004). When a multiple alignment of the
sequences is given a priori, the secondary structure can be predicted
by, e.g., RNAalifold (Hofackeret al., 2002). Another approach to
predict the secondary structure is to derive a number ofsuboptimal
secondary structures for a sequence e.g.,Wuchtyet al. (1999).

In this experiment, RNAmine is compared with CMfinder (Yao
et al., 2005), RNAfold (Hofackeret al., 1994), RNAsubopt (Wuchty
et al., 1999), RNAalifold (Hofackeret al., 2002), and comRNA (Ji
et al., 2004). CMfinder and comRNA exploit the common secondary
structure, while RNAfold and RNAsubopt predicts the structure
individually. Like RNAmine, RNAsubopt derives a number of mul-
tiple possible structures for a sequence. RNAalifold assumes the
multiple alignment, which is made here by clustalW (Thompson
et al., 1994). Those tools are used mostly with the default parame-
ters (See the supplementary paper for details). For RNAminewe setminsup andmax
ost to be 0.7 and 0.6, andw1, w2, w3 andw4 to
be 0.6, 0.15, 0.10, 0.15, respectively.
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Table 1. Summary of the test data and the results

Family RFAM ID #seqs length %id RNAmine CMfinder comRNA RNAalifold RNAfold RNAsubopt
1 5 10 MCC MCC MCC MCC MCC str/seq

Cobalamin RF00174 50 203.2 43 0.41 0.52 0.53 0.54 0.00 0.47 0.34 0.44 119.6
Lysine RF00168 50 181.6 46 0.80 0.85 0.86 0.79 0.21 0.35 0.64 0.74 112.3
Purine RF00167 37 99.6 53 0.83 0.90 0.91 0.89 0.00 0.52 0.73 0.81 8.3
RFN RF00050 48 137.2 64 0.62 0.71 0.74 0.41 0.00 0.57 0.44 0.5229.4
S box RF00162 50 110.4 61 0.77 0.82 0.84 0.78 0.29 0.48 0.64 0.7635.1
Tymo tRNA-like RF00233 27 82.6 66 0.76 0.88 0.88 0.93 0.55 0.51 0.60 0.72 10.3
glmS RF00234 14 177.6 55 0.80 0.86 0.90 0.88 0.47 0.35 0.58 0.66 30.7
tRNA RF00005 50 73.4 40 0.75 0.84 0.84 0.78 0.00 0.37 0.60 0.738.5

average 0.72 0.80 0.81 0.75 0.19 0.45 0.57 0.67 44.3

RFAM ID: ID number in Rfam database (http://www.sanger.ac.uk/Software/Rfam/). #seq: the number of sequences in each family. length: average length of sequence in
each family. %id: average sequence identity calculaed by alistat program. MCC: average MCC among sequences. Best MCC among top 1, 5 and 10 structures are shown in
result of RNAmine. For comRNA and RNAsubopt, the best MCC among predicted common secondary structures is shown (if comRNA produced no motif, MCC is 0 in this
table).str/seq(for RNAsubopt): the average number of predicted suboptimal secondary structures per sequence. The definition of MCC isfound in the supplementary paper.

We used the MCC (Mathews Correlation Coefficient), defined in
section 3 in the supplementary paper, as the performance measure.
The average MCCs are summarized in Table 1 and the running times
are shown in Table 2. See sensitivity and PPV for each family in the
supplementary paper (Table S1 and S2). The number of predicted
structures per sequence is also shown for RNAsubopt. RNAmine
performed better than RNAfold, RNAsubopt and comRNA in most
cases. The accuracies of RNAfold are not better than those ofthe
other methods, showing the difficulty of predictions from indivi-
dual sequences. The results of RNAalifold in Table 1 have limited
accuracies because the alignments of clustalW were used. When
the reference alignments that had been annotated in Rfam database
were used, the results were much better (See Table S3 in supple-
mentary paper). RNAsubopt performed relatively well, but it is due
to the large number of predictions (about 120 in maximum and 44 in
average). In comparison to CMfinder, RNAmine achieved compara-
tive accuracy overall, and for several families such as Lysine and
RFN, RNAmine performed better. The homogeneity of this data-
set was relatively high, because the sequence set is derivedfrom
one family. This result shows that RNAmine can compete well with
the state-of-the-art methods even in those clean datasets.In addi-
tion, RNAmine can deal with non-homogeneous data as shown in
the next section. See Figure 7 for example of the actual predicted
secondary structures of a sequence in TymotRNA-like family.

It is remarkable that RNAmine was more than twenty times
faster than CMfinder, though the worst-case time complexityof
graph mining is theoretically NP-hard (Inokuchi, 2004). Graph
mining is fast when the size of search tree is kept small as in our
implementation.

Figure 5 shows the best accuracies among top-ranked structures.
The accuracy saturates around rank 10, implying that one needs
to inspect only top ten structures. Figure 6 illustrates thechange
of accuracy and computation time against the minimum support
parameter. The computational time decreases monotonically as the
minimum support increases, because the search tree can be pruned
earlier if the minimum support is high. It is interesting to see that
the best accuracy is achieved at 0.7, which is much better than the
accuracy at 1. Setting the minimum support to 1, a stem pattern mat-
ching all the sequences is obtained. However, when the minimum
support is below one, multiple stem patterns are obtained, each of

which matches to a subset of sequences. This result shows thestruc-
ture prediction can be enhanced by exploiting hidden clusters in the
family.
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Fig. 5. The best MCC of RNAmine among top-ranked secondary structures.
Each dashed-line indicates the MCC for individual family and the solid line
shows the average accuracy.

3.2 Dataset with Multiple Families
In this experiment, our method is applied to the input sequences
including multiple RNA families. Six datasets are generated by
combining two families in Table 1 into one. We compared propo-
sed method with only RNAfold and RNAsubopt, because the other
tools assume that input sequences are related sequences or cannot
handle multiple families. For RNAmine,minsup is set to be 0.3
and the other parameter settings are the same as the previousexpe-
riments in Table 1. Table 3 shows our results. In comparison to
RNAfold and RNAsubopt, RNAmine has achieved better accuracies
uniformly in all the datasets. Moreover, RNAmine indeed detected
the two families as the separate stem patterns in most cases (see the
supplementary paper).
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UAAUUGAGGACAGUUCCUCUCCCUCUAGCACACAGAGGUCAAACUGGGUGCAACUCCCCCCCCUUCCGUGGGUAACGGAAACC
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.....(((((....)))))..(((((.......))))).......(((...........))).((((((.....))))))... -20.30

Fig. 7. An example of predicted secondary structures for a sequencein Tymo tRNA-like family. Top-ranked secondary structures are shown. The free energy
is shown at the end of each structure. Lower case letters indicate the correct stems given by Rfam annotations.
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Fig. 6. The average MCC (best of top 5) and average calculation time
among 8 families in Table 1. Solid and dashed lines indicate MCC and time,
respectively. We setmax
ost to be0:6.

Table 2. Running time (seconds) for each family in Table 1

Family RNAmine CMfinder comRNA RNAsubopt

Cobalamin 46.7 1684.9 1072.1 20.3
Lysine 115.7 1397.5 944.5 19.3
Purine 4.0 198.9 1216.1 0.6
RFN 35.5 630.8 648.7 2.8
S box 8.0 352.6 627.2 2.8
Tymo tRNA-like 1.8 106.0 816.7 0.3
glmS 26.9 355.3 732.5 1.8
tRNA 2.5 230.5 1220.4 0.6

average 30.1 619.6 909.8 6.0

The results of RNAalifold and RNAfold are omitted. The running time of both tools
are within a few seconds for all the families.

3.3 Local motif detection from long RNA sequences
Recently many long (more than 1000 bases) non-coding RNAs, cal-
led mRNA-like non-coding RNAs, are detected by genome-wide
analysis of cDNAs, e.g., (Numataet al., 2003). In this experi-
ment, our algorithm is applied to detect motifs from a familycalled
BIC whose secondary structure motif has already been reported
(Tam, 2001). BIC is a microRNA host gene and T-cell activation
early gene (van den Berget al., 2003). Our dataset is prepared
by using Tam’s paper and Regulatory non-coding RNAs database
(http://biobases.ibch.poznan.pl/ncRNA/). Our BIC dataset has three
sequences (Human, Mouse, Chicken). The average sequence length

Table 3. Results for multiple family dataset

RNAmine RNAfold RNAsubopt
Family MCC MCC MCC #secs/seq

Cobalamin + Lysine 0.62 0.49 0.59 116
Lysine + RFN 0.79 0.54 0.63 70.9
Purine + TymotRNA-like 0.91 0.67 0.76 9.3
S box + Purine 0.86 0.69 0.78 21.7
tRNA + S box 0.79 0.62 0.75 21.8
tRNA + Tymo tRNA-like 0.82 0.60 0.73 9.4

average 0.80 0.60 0.71 41.5

Each dataset is created by combining two families in Table 1 into one dataset. MCC:
average MCC. For RNAsubopt, the best MCC among predicted suboptimal secondary
structures is shown. For RNAmine, the best MCC among top 5 structures is shown.
#secs/seq (for RNAsubopt): the average number of predictedsecondary structures per
sequence.

is 1715 and the average sequence similarity is 53%. In this expe-
riment, we setminsup to be 1.0 because we would like to find
the common motifs in all the sequences. Also we set the maxi-
mum motif size to 100 for detecting thelocally conserved motifs.3

We selected the stem patterns of maximum size (4 in this case)
and, among them, the best motif is identified as the one with
the minimum cost (Figure 8). Magenta, blue and green stems in
Figure 8 correspond to the reported stems I, II and V, respectively
(see Figure 9). This result highlights RNAmine’s ability ofdetecting
local motifs from a small dataset.

4 DISCUSSION AND CONCLUSION
We have developed a novel algorithm for mining stem patterns
from RNA sequences by extending graph mining techniques. One
of the remarkable points of our approach is that multiple motifs
can be found in a set of sequences from multiple RNA families.
The homogeneity of given sequences can be explicitly specified
by the parameterminsup. The effectiveness of our algorithm was
confirmed by comparing with the other secondary structure predic-
tion tools and detecting the local motifs from long RNA sequences.
Although the search space has been reduced by adopting a mini-
mum support and a maximum cost of the stem pattern, the worst
computational complexity is not polynomial order. Considerably
longer computational time is required for longer sequencesor lar-
ger data sets (see Figure S4 and S5 in supplementary paper). For

3 That is realized by not making edges between two stem candidates more
than 100 bases away from each other.
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>Hs bic

225 GUAGGCUGUAUGCUGUUAAUGCUAAUCGUGAUAGGGGUUUUUGCCUCCAACUGACUCCUACAUAUUAGCAUUAACAGUGUAUGAUGCCUGU 315

225 ((((((((((((((((((((((((((.....((((((((.(((....)))..))))))))...))))))))))))))))))))..)))))) 315

>Mm bic

148 AGGCUGUAUGCUGUUAAUGCUAAUUGUGAUAGGGGUUUUGGCCUCUGACUGACUCCUACCUGUUAGCAUUAACAGGACACAAGGCCU 234

148 (((((.....((((((((((((((.....((((((((((((...))))..))))))))...)))))))))))))).......))))) 234

>Gg bic

343 AGGCUGUAUGUUGUUAAUGCUAAUCGUGAUAGGGGUUUUUACCUCUGAAUGACUCCUACAUGUUAGCAUUAACACUGUACCAUGCCU 429

343 ((((.......(((((((((((((.....((((((((((((....)))).))))))))...))))))))))))).........)))) 429

Fig. 8. A motif of BIC found by RNAmine. Red, green and magenta stems correspond to the reported stems I, II and V in Figure 9, respectively. Left number
of sequence indicates the start point in mother sequence andright does the end point.

long sequences, local search version of RNAmine can reduce its
computational time by ignoring the remote base pairs that have
distances longer than a threshold. The local search can be imple-
mented in RNAmine by using local base pairing probabilitiesin
RNAplfold Bernhartet al. (2006). Our parameters (e.g.,pmin) are
optimized manually using small data sets. Automatic optimization
of the parameters is one of our future works.Our recommendation
of the parameterpmin is from 0.001 to 0.01 (0.05 is used in our
experiments) and the parameterlmin is from 3 to 5 (3 is used in our
experiments).

Due to our graph representation, our method can deal with
pseudoknottedstructures, unlike CMfinder, RNAalifold and RNA-
subopt.4. The efficiency of our algorithm would be further improved
by the following ideas: (a) Constraining the smallest cost of vertex
labels for theanchoringeffect (Touzet and Perriquet, 2004). (b) To
Avoid enumeratingover-generalized patterns(Inokuchi, 2004). (c)
Enumerating onlyclosed patterns(Yan and Han, 2003). To apply
our algorithm to large scale motifs and cluster detection problems,
more elaborations might be needed on the scoring method of stem
patterns, though a simple scoring scheme performed well in asmall
dataset in Section 3.3.

Fig. 9. The known secondary structure motifs of BIC reported in Tam
(2001). This figure is cited from (Tam, 2001)

4 In construction of stem graphs, we used the McCaskill’s algorithm
(McCaskill, 1990) that basically does not consider the pseudoknots in the
calculation of base pairing probabilities. But this part isnot essential and
can be replaced by another algorithm (Dirks and Pierce, 2003)
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