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ABSTRACT be predicted by RNAalifold (Hofackest al., 2002) or comRNA (Ji
Motivation: In detection of non-coding RNAs, it is often necessary et al, 2004), for example. Once the common structure has been
to identify the secondary structure motifs from a set of putative RNA determined, it can be used for a genome-wide scan by ,efgr; In
sequences. Most of the existing algorithms aim to provide the best nal (Eddy and Durbin, 1994), RNAmotif (Maclet al., 2001), or
motif or few good motifs, but biologists often need to inspect all the PHMMTS (Sakakibara, 2003).

possible motifs thoroughly. The problem becomes more difficult when the homogeneity is
Results: Our method RNAmine employs a graph theoretic repre- low. In some cases, only the subset of the given sequencesssha
sentation of RNA sequences, and detects all the possible motifs the common structure. In some cases, there are an unknowmenum
exhaustively using a graph mining algorithm. The motif detection pro- of the clusters with different common structures. In ordeaba-
blem boils down to finding frequently appearing patterns in a set of lyze the sequences with low homogeneity, it is necessargtect!
directed and labeled graphs. In the tasks of common secondary struc- the secondary structureotifsshared by a significant fraction of the

ture prediction and local motif detection from long sequences, our sequences, not by all. In order to find multiple motifs, it csgi-
method performed favorably both in accuracy and in efficiency with ble to use a mixture of the probabilistic motif models (Blekaal.,

the state-of-the-art methods such as CMFinder. 2003) and train it using the EM algorithm (Dempsétral., 1977),
Availability: The software is available on request. which is an algorithm for finding the maximum likelihood es#-
Contact: hamada-michiaki@aist.go.jp tes of the parameters in the probabilistic models. Howetreat
Supplementary information: Visit the following URL for supplemen- approach inevitably suffers from local minima problems,,ithe
tary information, software availability and the information about the solution is not guaranteed to converge to the global optimarthis
web server. http://www.ncrna.org/RNAMINE/. paper, we propose a new method based on a graph mining atgorit
in order to detect the motifs shared by a subset of the giveA RN
1 INTRODUCTION sequences. Our method is also applicable to the set of segmien

Recently, it is revealed that many RNAs, which are not trztesl from multiple families, and able to find the multiple motiSMfin-

into proteins, play essential roles at various biologitagies. Those der (Yaoet al, 2005) does not assume that all the_ sequen_ce_s have a

RNAs are called functional RNAs or non-coding RNAs (ncRNAs) €0mmon secondary structure, but are unable to find multipiefsn

and attracting remarkable attention. Computational apesmen-  ©f the sequences from different families. _

tal screenings have predicted a number of non-coding RNAs, (e N this paper, an RNA sequence with its potential secondang s

Denget al, 2006; Washietkt al, 2005; Numatat al, 2003), but  {Ure is represented as a directed labeled graph, cabeehagraph

only few of those RNAs are classified, because their funstmre ~ €ach of whose node corresponds tstem candidateWe employ

still unknown. graph miningalgorithms, where highly probable motifs seghau-
When a set of unaligned sequences of putative RNAS is prdvides'[ivelyer?umerated using the branch-and-.b(.)unq algorithm over the

without further information, we have to choose an appraprima-  Well-designed data structures. Graph mining is a recentigre

lysis tool based on theomogeneityf the sequences. In this paper, 9iNg subfield of data mining and a suite of algorithms are psed

we use the ternhomogeneityto both similarity of the sequences €cently (e.g., FSSM (Huaet al, 2003), AGM (Inokuchiet al,

and that of the secondary structures. If the RNA sequencaes a000, 2003), gSpan (Yan and Han, 2002)). Unlike the RNA graph
highly homogeneous, they are evolutionarily related aratesthe proposed by Gaet al. (2003)., it is not.requwed that the secondary
unique common structure. In that case, the common strucame structure of each sequence is known in our algorithm. Thesade
made from the putative stems derived by thresholding Mciltask
base pairing probability matrix (Mathews, 2004). Therefothe
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stem graph can take into account all the possible secondiary- s
tures. A discrete label is assigned to each node such thairttilar
stem candidates share the common label. The labels areniteter
by a hierarchically clustering of all the stem candidatethandata-
base. All the subgraphs appearing in at leasitem graphs, called

stem patternsare exhaustively enumerated. For the total number of

graphsn, the fractionm/n is calledminimum supportThis para-
meter explicitly specifies the homogeneity of the sequerteBy
setting minimum support to 0.9, for, example, we can enutaeri
the stem patterns included in at least 90% of the sequences.

We developed a new graph mining algorithm by expanding

gSpan (Yan and Han, 2002), because it turned out that caavent
nal graph mining algorithms are too restrictive for our mg@. One
problem is that patterns are identified based on the exaahnudt
labels. In order to allow approximate label match, we inticel a
taxonomyof the labels, which essentially describe the similarity
of the labels. Furthermore, we exploited graph-theorkepeaper-
ties of our RNA graphs to increase efficiency and reduce rdaiun
solutions.

In the experiments, our algorithm will be applied to threféedent
tasks. The first task is to predict the common secondary teteic
of every seed sequence in the specific Rfam (Griffiths-Jehes,
2005) families (Section 3.1). Since the sequence set igatefiom
a single family, the homogeneity is considered to be higlwéler,
we will show that the accuracy of the prediction can be imptbloy
exploiting multiple clusters in a family. The second taskasind
two Rfam families in a mixed set of the sequences, where the mi
mum support is set to a small value (Section 3.2). Finallyharts
motif will be found from a set of long RNA sequences (Secti@).3

2 METHODS

Our main task is to find the frequent stem patterns from a da&@b
of sequences with unknown secondary structures. A coreisdea
represent an RNA sequence as a new data structure callstethe
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Fig. 1. An example of RNA sequence with known secondary structure
(right: cited from Rfam database, http://www.sangerld&aftware/Rfam/)
and its corresponding stem graph (left). The color of edgeesponds to a
relation of stem indicated in left of Figure 2 and the colothaf vertex in the

left figure corresponds to the color of the stem in the rightrig
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Fig. 2. Left: The three positional relations between two stem adates.
Right: An example of the stem graph superposed on the basegaiobabi-
lity matrix of a tRNA sequence. A consistent RNA secondarycttire must
be a clique subgraph of this graph. For exan{ple3, 7, 9) is consistent.

graph By the conversion of the sequences to the stem graphs, oufalue of this matrix represents the probability of thié nucleotide

task will be formulated as a mathematically well-definedobem.
A motif is defined as a stem pattern in a graph-theoretic manne

2.1 Stem Graphsand Stem Patterns

and thej-th nucleotide forming a base pair. Consecutive base pairs
whose probability are more than..» are identified as the part of
the stem candidates, and the stem candidates shortet.thaare
discarded. The node index is expanded 8sd, p,r), wherer is

Let us begin with the stem graph of a sequence whose secondatkie confidence of the stem, calculated as the average of bas&p

structure is known. The known secondary structure of RNAlmn
represented by the set of stems in the structure.dtem grapha

probabilities. The stem graph made from a sequence is ySuatll
complete, because there may be overlapping stems (Figtigh),

node corresponds to a stem and an edge between two nodeis descr Since the node index has a complex form and not amenable to

bes the relative position of the two corresponding stemgufféi 1,
left). Each node is indexed by the three-tupte d, p), whereS is
the stem sequencd, is the distance in nucleotide betweenahd

3’ strands of the stem andis the left-most position of the stem
in the original RNA sequenceEach edge has a label P (Parallel),
N (Nested) or K (Pseudoknotted) according to the relativ@tipm
(Figure 2 left. See also Tabet al. (2006)). An important feature is
that when the secondary structure is known, the correspgredem
graph forms acompletegraph (i.e.clique), since one of the three
relations always applies to any pair of stems.

graph mining, it is translated into a set of discrete labalshie
following way. The nodes of all the stem graphs are clusterati
organized as &abel taxonomyFirst, a dendrogram is generated by
the hierarchical clustering of the nodes (i.e., stem caatdi) from

all the stem graphs using the indic€S, d, p, ) (Figure 3, left),
where the measure of dissimilarity will be presented in iBac.2.
Then, itis sliced to layers by the given dissimilarity threkls. Then

we generate a label for each cluster in each layer, and th#ings
tree of labels is called the label taxonomy (Figure 3, right)

A stem patternis represented as a directed labeled and clique

When the secondary structure is unknown, a stem graph is defgraph where node labels are taken from arbitrary layerseofeabel

ned on thestem candidatesnot on the confirmed stems as their
nodes. The stem candidates are derived from the base ppithg-
bility matrix calculated by McCaskill’s algorithm (McCaitlk 1990)
using the Vienna RNA package (Hofacletral., 1994). The (i, )

taxonomy, and the edge label is either P,N or K. A stem pattern
matchedo a directed grapl, if they have the same topology and
the same edge labeksnd every node label i is an ancestor in the

label taxonomy of the label of the corresponding nod€&'in
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Fig. 3. Left: A dendrogram generated by a hierarchical clusterinie set

of the stem candidates &l the sequences using dissimilarity described in

2.2 between stem candidates. Each leaf in left dendrogréiaies a stem
candidate. Right: A label taxonomy constructed from theddegram in the
left figure. The right most fractions of taxonomy are geneation cost of
label in each layer. Taxonomy in this figure shows nodes 1 ahave the
same label “A” in the 1st layer of taxonomy and 1, 2, 3, 4 haeeséime label
“E” in the 2nd layer.

Fig. 4. Schematic figure of the tree-shaped search space of stesnnzath
child pattern is made by adding one edge to a previous pafiém vertex
labels have a predetermined order governing the extensmegs (shown
as “<”).

to require that the stem pattern finds hits in at leasttem graphs,

If a stem pattern finds matching subgraphs in some of the sterfecause it is meaningless to obtain a stem pattern with nohmat

graphs, the corresponding RNA sequences share the partiahon
structurethat are represented by the stem pattern.

2.2 Dissimilarity of Stems

We define the dissimilarity between two steisis and S, as the
weighted sum of the four components,
d(S1,82) = Z wid; (S1, S2), (1)

i=1,2,3,4

wherew; is the weight satisfying_, _, , ; , wi = 1. The first
component accounts for the sequence similarity(S:,S>) =
exp{—aSW(S1,S2)}, where SW(S:,S>) is the score of the
local alignment of the base pairs using RIBOS8B460 substi-
tution matrix (Klein and Eddy, 2003). The confidence score of

Denote bysupport(P) the fraction of stem graphs that includes the
patternP. Then, the first constraint is written aapport(P) >
m/n, wherem/n is called the minimum supportr{insup) later
on. The second is that the stem pattern is constrained to ligue c
to avoid overlapping stems. The third constraint is aboeiggnera-
lity of the stem pattern. If many labels in the stem patteeciiosen
from a higher layer of the taxonomy, the pattern is so gerbaithe
number of hits (i.e., subgraphs which matches to that pgtistoo
large. To let the hits of the pattern form a meaningful RNA ifggm
they have to besimilar to each other. To encourage the use of the
labels from low layers, the cost of a label is defined as areasing
function of the layer height. For a stem patté?nthe costcost(P)

is defined as the average cost of the labels of all its nodeshé\s
third constraint, we requireost(P) below a threshold, called the
maximum cost feazcost). In summary, our task is formulated as

stemr(S) is calculated as the average of the base pairing probabipe|ow.

lities. Based on those scores, the second component iedeai
d2(S1, S2) = 1 — 1(r(S1) + r(S2)). Finally, the third and forth
component are respectively computed as

B 4+ min(d(S), d(S>))
B + max(d(S1),d(S2))

d3(S1,8,) =1—

and
7+ min(p(S1), p(S2))

v + max(p(S1), p(S2))

da(S1,S5) =1

FORMULATION 1. Given a set of stem graphs, a label taxonomy,
a minimum supporininsup and a maximum costaxcost, com-
pletely enumerate every stem pattdfrthat satisfies the following
conditions:

1. support(P) > minsup.
2. Pisaclique.
3. cost(P) < maxcost.

using the loop distandghe distance between inner most base pairs) Comprehensive enumeration of all the subgraphs in a gratah da

d(S) and the start positiofthe position of leftmost basef the

base is a well-studied subject in computer science. We haltebr

stemp(S). For the purpose of finding the local motifs from long aigorithm as an extension of a basic comprehensive algoxtiled
sequencesys should be set to zero in order to disregard the abso-gspan (Yan and Han, 2002). Gspan is basically a branch-anoeb

lute positions. See (&t al,, 2004) and (Tabeét al., 2006) for the
alternative (dis)similarity measures.

2.3 Graph Mining with Label Taxonomy

In obtaining the stem patterns, we take a graph mining approa
where a set of constraints is determined first, and all the gtat-
terns satisfying the constraints are exhaustively enut@erdt is
clearly different from other approaches that aim to obthin best
stem pattern. We set up the following three constraints. fifeeis

algorithm over a DFS code treérigure 4).Each node of the tree is
a DFS code which is a string representation of a grapie tree is
organized such that the child nodes represent the supesycdphe
parent node. The graphs in the database are enumeratedtigsta
from the root node and expanding the tree by generating néd ch
nodes. Yan and Han (2002) proposed an efficient way of gengrat

1 DFS stands for depth first search.




the tree whose nodes enumerate the set of all the subgraphs of 2.4 Secondary structure prediction using stem patterns

original graph without redundancy.

Given a stem graph, any contained clique gives a consisteons

In our problem, the stem patterns are defined as the subgophs qary structure without overlapping stems. Fhimimum free energy

the stem graphs satisfying the constraints. To impose theti@ints,
we focus on the following properties of the DFS code drééthe
subgraphP; lies in the upstream aP» , then

e (a)support(Py) > support(P»),
o (b)cost(P1) < cost(P,) if P andP;, are cliques.

In our algorithm, the generation of the DFS code tree is ictstt
by exploiting those properties. For example, if a cligdevhose
support is belowninsup or cost is abovenazcost is found in the
DFS code tree, we do not generate the downstreai (@fe., tree
pruning). Non-clique stem patterns are enumerated aslwlbnly
the cliques are selected as the final solution. In compatisdhe
comprehensive enumeration, this restriction improve®ffigiency

and the memory consumption by orders of magnitude. The eond

tion (a) is common in other graph mining methods, but the tmmd
(b) is unique to our algorithm. Pseudocodes of our algorstiare

shown in Algorithms 1 and 2. Algorithm 1 is the main part of our

algorithm and Algorithm 2 is a recursively called subroatirfror
technical details, see the supplementary paper.

Algorithm 1 RNAmine(RS, minsup, mazcost)

Input: RS: set of RNA sequencesninsup: minimum support,
maxcost: maximum cost

(MFE) of the corresponding secondary structure of suchqueli
can be computed by a software like RNAeval in Vienna RNA
package(Hofackeet al., 1994).

Using the MFE of the cliques, the secondary structure predic
tion is done in the following way. Assume that the stem pater
are already obtained from a set of RNA sequences. In pradicti
the secondary structure of a sequence in the set, we firdifiden
the set of stem patterns that have matching subgraphs. Amgtc
subgraph corresponds to a predicted secondary structuceN
that one stem pattern can be matched in a several differeyg, wa
creating slightly different secondary structures (Figdye Repea-
ting this procedure through all the stem patterns, the stres of
all the sequences are determined. This process gives a nuwhbe
jsecondary structures to one sequence, so they are rankéetiby t
minimum free energy (Figure 7).

3 RESULTS

For benchmarking, we used the Rfam database (version 71@hMa
2005) containing 503 RNA families (Griffiths-Jones al.,, 2005),
whose common secondary structures are available for theé see
sequences. We selected eight families whose number ofitmirp
is more than three. All the families except tRNA are used by Ya
et al.(2005) as well. For the families that contain more than 5@ see

Output: PS: stem patterns which satisfy all the conditions in sequences, we randomly selected 50 sequences. We did hateinc

Formulation 1

1. PS=10
2: construct directed labeled grap@$ and taxonomy” from RS
3: Cinitiar < {P : Pisedgesize lsupport(P) >

minsup and cost(P) < mazcost}
: s0rtCinitiar iN DFS lexicographic order
: for all s € Cinitial do
Call GraphMining ¢, minsup, mazcost, GS, T, PS)
end for
:return PS

oNO R

Algorithm 2 GraphMining ¢, minsup, maxcost, GS, T, PS)

Input: s: current pattern,GS: directed labeled graph sefl:
taxonomy of vertex label

. if support(s) < minsup then return

»if cost(s) > mazxcost then return

. if s is a non-minimum DFS codenen return

. if sis a cliquethen store patters to P.S

: scanG.S once, find every edgethat can be added towithout
violating the constraints; insert the found edges ifito

. sortC in the DFS lexicographic order

: for all s € C do

Call GraphMining§, minsup, maxcost, GS, T, PS)

. end for

a s~ wN B

© o N o

2 Our DFS code tree is slightly different from original oneeSipplemen-

tary paper for details.

the sequences with a nucleotide character other than A, G,and
T. The dataset is summarized in Table 1. All experiments are p
formed using a machine with a 2.4GHz AMD Optef'dprocessor
and 20GB memory.

3.1 Secondary StructurePrediction

Secondary structure prediction of an individual sequerae lme
done by free energy minimization using, e.g., RNAfold (Hdr
et al, 1994). However, when the sequences share a common secon-
dary structure, it is often better to find the common struetand
parse each sequence using the common structure. This proces
can be implemented using the EM algorithm over the covaeianc
model, CMfinder (Yaet al, 2005) and a graph-theoretical method,
comRNA (Ji et al, 2004). When a multiple alignment of the
sequences is given a priori, the secondary structure caredecfed
by, e.g., RNAalifold (Hofackeet al, 2002). Another approach to
predict the secondary structure is to derive a numbasubbptimal
secondary structures for a sequence e.g., Wuethdy. (1999).

In this experiment, RNAmine is compared with CMfinder (Yao
et al, 2005), RNAfold (Hofackeet al., 1994), RNAsubopt (Wuchty
et al, 1999), RNAalifold (Hofackeet al., 2002), and comRNA (Ji
etal, 2004). CMfinder and comRNA exploit the common secondary
structure, while RNAfold and RNAsubopt predicts the stuwet
individually. Like RNAmine, RNAsubopt derives a number ofiin
tiple possible structures for a sequence. RNAalifold assuthe
multiple alignment, which is made here by clustalW (Thompso
et al, 1994). Those tools are used mostly with the default parame-
ters (See the supplementary paper for details). For RNAm@set
minsup andmaxcost to be 0.7 and 0.6, and; , w2, ws andw, to
be 0.6, 0.15, 0.10, 0.15, respectively.




Table 1. Summary of the test data and the results

Family RFAMLID #segs length %id RNAmine CMfinder comRNA RNAalifold RNAdo RNAsubopt
1 5 10 MCC MCC MCC MCC MCC str/seq
Cobalamin RF00174 50 203.2 43 041 052 0.53 0.54 0.00 047 34 0. 044 1196
Lysine RF00168 50 181.6 46 0.80 0.85 0.86 0.79 0.21 0.35 0.64 .740 112.3
Purine RF00167 37 99.6 53 0.83 0.90 091 0.89 0.00 0.52 0.73 81 0. 83
RFN RF00050 48 137.2 64 0.62 0.71 0.74 0.41 0.00 0.57 0.44 0.529.4
S_box RF00162 50 1104 61 0.77 0.82 0.84 0.78 0.29 0.48 0.64 0.785.1
TymotRNA-like RF00233 27 82.6 66 0.76 0.88 0.88 0.93 0.55 0.51 00.6 0.72 10.3
glms RF00234 14 1776 55 0.80 0.86 0.90 0.88 0.47 0.35 0.58 6 0.630.7
tRNA RF00005 50 73.4 40 0.75 0.84 0.84 0.78 0.00 0.37 0.60 0.78.5
average 0.72 0.80 0.81 0.75 0.19 0.45 0.57 0.67 44.3

RFAM_ID: ID number in Rfam database (http://www.sanger.ac.oftare/Rfam/). #seq: the number of sequences in eachyfateiigth: average length of sequence in
each family. %id: average sequence identity calculaedibyadbrogram. MCC: average MCC among sequences. Best M@Batop 1, 5 and 10 structures are shown in
result of RNAmine. For comRNA and RNAsubopt, the best MCC agpredicted common secondary structures is shown (if compduced no motif, MCC is 0 in this
table).str/seq(for RNAsubopt): the average number of predicted suboptimeondary structures per sequence. The definition of M@@uisd in the supplementary paper.

We used the MCC (Mathews Correlation Coefficient), defined inwhich matches to a subset of sequences. This result showsttice

section 3 in the supplementary paper, as the performancsumea

ture prediction can be enhanced by exploiting hidden atastethe

The average MCCs are summarized in Table 1 and the runnieg tim family.

are shown in Table 2. See sensitivity and PPV for each famitize
supplementary paper (Table S1 and S2). The number of peedict
structures per sequence is also shown for RNAsubopt. RNAmiIn
performed better than RNAfold, RNAsubopt and comRNA in most
cases. The accuracies of RNAfold are not better than tholeeof
other methods, showing the difficulty of predictions fronaliin-
dual sequences. The results of RNAalifold in Table 1 havétdith
accuracies because the alignments of clustalW were useénWh
the reference alignments that had been annotated in Rfaabat
were used, the results were much better (See Table S3 inesuppl
mentary paper). RNAsubopt performed relatively well, tbis due

to the large number of predictions (about 120 in maximum ahith4
average). In comparison to CMfinder, RNAmine achieved compa
tive accuracy overall, and for several families such asngsind
RFN, RNAmine performed better. The homogeneity of this data
set was relatively high, because the sequence set is ddrived
one family. This result shows that RNAmine can compete wéhw
the state-of-the-art methods even in those clean datdsetsidi-

-
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average
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Rank

tion, RNAmine can deal with non-homogeneous data as shown iig. 5. The best MCC of RNAmine among top-ranked secondary strestur

the next section. See Figure 7 for example of the actual ghestli
secondary structures of a sequence in TytRNA-like family.

It is remarkable that RNAmine was more than twenty times
faster than CMfinder, though the worst-case time compleafty
graph mining is theoretically NP-hard (Inokuchi, 2004).a@in
mining is fast when the size of search tree is kept small asiin o
implementation.

Figure 5 shows the best accuracies among top-ranked s&actu
The accuracy saturates around rank 10, implying that ondsnee
to inspect only top ten structures. Figure 6 illustrates change

Each dashed-line indicates the MCC for individual familygldine solid line
shows the average accuracy.

3.2 Dataset with Multiple Families

In this experiment, our method is applied to the input seqesn

including multiple RNA families. Six datasets are generated by
combining two families in Table 1 into one. We compared propo
sed method with only RNAfold and RNAsubopt, because therothe

of accuracy and computation time against the minimum supportools assume that input sequences are related sequencasnot ¢

parameter. The computational time decreases monotonasalithe
minimum support increases, because the search tree canedpr
earlier if the minimum support is high. It is interesting ®esthat
the best accuracy is achieved at 0.7, which is much bettertti@
accuracy at 1. Setting the minimum support to 1, a stem patte-
ching all the sequences is obtained. However, when the rmimim
support is below one, multiple stem patterns are obtainach ef

handle multiple families. For RNAmineninsup is set to be 0.3
and the other parameter settings are the same as the prexioets
riments in Table 1. Table 3 shows our results. In comparigon t
RNAfold and RNAsubopt, RNAmine has achieved better acéesac
uniformly in all the datasets. Moreover, RNAmine indeededédd
the two families as the separate stem patterns in most ceseshe
supplementary paper).
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Fig. 7. An example of predicted secondary structures for a sequangeno_tRNA-like family. Top-ranked secondary structures arergior he free energy
is shown at the end of each structure. Lower case lettersatelthe correct stems given by Rfam annotations.

Table 3. Results for multiple family dataset

3 o— o —— " ’E
4 ~_ e
~ ] @ RNAmine RNAfold RNAsubopt
° 13 Family MCC MCC MCC #secs/seq
< g g Cobalamin + Lysine 0.62 0.49 0.59 116
g° e Lysine + RFN 0.79 054 063 709
N R Purine + TymatRNA-like 0.91 0.67 0.76 9.3
2] ) " S.box + Purine 0.86 069 078 217
B " tRNA + S_box 0.79 062 075 218
3 8 tRNA + Tymo_tRNA-like 0.82 0.60 0.73 9.4
T P 2] average 0.80 0.60 0.71 41.5

T T
0.6 0.7
minimum support

0.3 0.4 0.5

Fig. 6. The average MCC (best of top 5) and average calculation tim
among 8 families in Table 1. Solid and dashed lines indica®C\and time,
respectively. We setazcost to be0.6.

Table 2. Running time (seconds) for each family in Table 1

Each dataset is created by combining two families in Tabletd one dataset. MCC:

average MCC. For RNAsubopt, the best MCC among predictedpgirbal secondary

Structures is shown. For RNAmine, the best MCC among top ictitres is shown.

#secs/seq (for RNAsubopt): the average number of predsmedndary structures per
sequence.

is 1715 and the average sequence similarity is 53%. In thpe-ex
riment, we setminsup to be 1.0 because we would like to find
the common maotifs in all the sequences. Also we set the maxi-

Family RNAmine CMfinder comRNA RNAsubopt mum motif size to 100 for detecting thecally conserved motifs.
Cobalamin 46.7 1684.9 1072.1 20.3 We selected the stem patterns of maximum size (4 in this case)
Lysine 1157 1397.5 944.5 19.3 and, among them, the best motif is identified as the one with
Purine 4.0 198.9 1216.1 0.6 the minimum cost (Figure 8). Magenta, blue and green stems in
g';’:x :;5(')5 36533'2 2378'27 22'5 Figure 8 correspond to the reported stems I, Il and V, regmigt
mame 15 o0 by o3 eSS remltighs dNAmnes ainafecing
glms 26.9 355.3 7325 1.8 :
tRNA 2.5 230.5 1220.4 0.6

average 30.1 619.6 909.8 6.0 4 DISCUSSION AND CONCLUSION

The results of RNAalifold and RNAfold are omitted. The rumgitime of both tools
are within a few seconds for all the families.

3.3 Local motif detection from long RNA sequences

Recently many long (more than 1000 bases) non-coding RN&s, ¢
led mRNA-like non-coding RNAs, are detected by genome-wid
analysis of cDNAs, e.g., (Numatet al, 2003). In this experi-
ment, our algorithm is applied to detect motifs from a fanihfled

We have developed a novel algorithm for mining stem patterns
from RNA sequences by extending graph mining techniqueg On
of the remarkable points of our approach is that multipleifsot
can be found in a set of sequences from multiple RNA families.
The homogeneity of given sequences can be explicitly specifi
by the parameteminsup. The effectiveness of our algorithm was
confirmed by comparing with the other secondary structueelipr
etion tools and detecting the local motifs from long RNA seupes.
Although the search space has been reduced by adopting a mini
mum support and a maximum cost of the stem pattern, the worst

BIC whose secondary structure motif has already been mgport COmMputational complexity is not polynomial order. Consadey
(Tam, 2001). BIC is a microRNA host gene and T-cell activatio !0nger computational time is required for longer sequeruesr-
early gene (van den Bergt al, 2003). Our dataset is prepared 9ger data sets (see Figure S4 and S5 in supplementary paper). F
by using Tam’s paper and Regulatory non-coding RNAs da@bas
(http://biobases.ibch.poznan.pl/ncRNA/). Our BIC datdms three 3 That is realized by not making edges between two stem caegigaore
sequences (Human, Mouse, Chicken). The average sequagtie le than 100 bases away from each other.




>Hs_bi ¢

225 GUAGGCUGUAUGCUGUUAAUGCUAAUCGUGAUAGGGEEUUUUUGCCUCCAACUGACUCCUACAUAUUAGCAUUAACAGUGUAUGAUGCCUGU 315
225 (((ccccccccccccccccccccccc. CCCCCCCCCCC-+20))-2999000))---))0000)))))))))))))--)))))) 315
>Mmbi ¢

148 AGGCUGUAUGCUGUUAAUGCUAAUUGUGAUAGGGEGEUUUUGGCCUCUGACUGACUCCUACCUGUUAGCAUUAACAGGACACAAGGCCU 234

148 (((((.. ... ceecceccccceec. - CCOCCCCCCCCE--02)-000000) )= 00000)))0)))) ) - o ))))) 234
>CGg-bi c

343 AGGCUGUAUGUUGUUAAUGCUAAUCGUGAUAGGGGUUUUUACCUCUGAAUGACUCCUACAUGUUAGCAUUAACACUGUACCAUGCCU 429

343 ((((C.vvvn v ceecceceeeecc. e CCCCCCCCOCCC-00)-000000)) - 00))0)))))) e )))) 429

Fig. 8. A motif of BIC found by RNAmine. Red, green and magenta stearsespond to the reported stems |, Il and V in Figure 9, resmde. Left number
of sequence indicates the start point in mother sequencagiridioes the end point.
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